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Abstract

Symbolic Model Checking extends the scope of verification algorithms that can
be handled automatically, by using symbolic representations rather than explicitly
searching the entire state space of the model. However even the most sophisti-
cated symbolic methods cannot be directly applied to many of today’s large designs
because of the state explosion problem. Approximate symbolic model checking is
an attempt to trade off accuracy with the capacity to deal with bigger designs.
This paper explores the idea of using overlapping projections as the underlying ap-
proximation scheme. The idea is evaluated by applying it to several modules from
the I/O unit in the Stanford FLASH Multiprocessor, and some larger circuits in
ISCAS89 benchmark suite.

1 Introduction

The ability to enumerate the set of states reachable from a certain state,
and the ability to enumerate the set of states that can reach a certain state
are essential to many model checking algorithms. Binary Decision Diagrams
(BDDs) [2] have proved to be a viable data structure for doing symbolic reach-
ability on larger hardware designs than before. However for many large design
examples, even the most sophisticated BDD-based verification methods can-
not produce exact results because of size blowup. However, required properties
of a design rarely rely on every implementation detail of the design, so ap-
prozimate verification algorithms may yield meaningful results while handling
larger designs.

1 This work was supported by DARPA contracts DABT63-94-C-0054 and DABT63-96-C-
0097. The content of this paper does not necessarily reflect the position or the policy of the
Government and no official endorsement should be inferred.
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We are interested in safety properties that hold for every member of a set
S of states. A superset S,, of S is called an overapprozimation of S. Although
Sep may be larger than S, it may also have a smaller representation, so the
computation of S,, may be more efficient than S. If every state in S,, satisfies
a property, we can be sure that every state in S also satisfies the property.
Hence, a sufficiently accurate approximation can yield a useful result.

The approximation used is based on owverlapping projections of sets of
states. A set of states is represented by a list of BDDs, each element of
the list constrains possibly overlapping subsets of the state variables, The
projection of a set S of bit vectors onto a set of one-bit variables, w; , is the
(larger) set of bit vectors that match some member of S for all variables in
w; (the values of other variables are ignored). S can be approximated by
projecting it onto many different subsets of the variables, and considering S,,
to be the intersection of all of the approximations.

The idea is evaluated on several control modules from a real, large design
unit in the Stanford FLASH Multiprocessor, with promising results. Proper-
ties in the design were either shown to hold for all reachable states, or actual
violations were proved to exist in the exact reachable state space (some vio-
lated assertions resulted from omitting constraints on the possible inputs to
the design).

2 Related Work

At a high level, this work is quite similar to that of Wong-Toi, et al. [8],
who used successive forward and backwards overapproximations and under-
approximations to verify real-time systems. That work used polyhedra for
representing sets of real numbers along with BDDs, but approximation was
used only for the polyhedra, not for the BDDs.

Various approaches to approximate reachability and verification using BDDs
have preceded this work. Ravi et al [16] use “high density” BDDs to compute
an underapprozimation of the forward reachable set. Cho et al [5] proposed
symbolic forward reachability algorithms that induce an overapprozimation.
They partition the set of state bits into mutually disjoint subsets, and do a
symbolic forward propagation on individual subsets. Cabodi et al [4] com-
bine approximate forward reachability with ezact backward reachability. Lee
et al [14] propose “tearing” schemes to do approximate symbolic backward
reachability. They also partition the set of state bits into mutually disjoint
subsets. They form the block sub-relations for the various subsets, and then
incrementally “stitch” the block sub-relations together until the approximated
next state relation is accurate enough to prove or disprove a given property.
In contrast to the approaches in [16] we are interested in computing overap-
proximations (supersets). In contrast to the approaches in [4,5,14], we allow
for overlapping subsets, as overlapping projections have been shown [10] to be
a more refined approximation compared to earlier schemes based on disjoint
partitions.
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3 Background

We analyze synchronous hardware, given as a Mealy machine M = (z, y, g, ),

where z = {z;,...,z;} is the set of state variables, and y is the set of input
signals. We will use ' = {z{,...,z}} to denote the next state versions of
the corresponding variables in z = {zi,...,zx}. The set of states is given by

[z — B], where B = {0,1}. The initial state gy € [z — B]. The next state
functionisn: [z = B] x [y = B] = [z — B].

In our applications, sets can be viewed as predicates, since we can form the
characteristic function corresponding to a set. BDDs can be used to represent
predicates and manipulate them [3]. For example, let R(z) be a predicate
with support in z, we can compute the image of R under n as

Im(R(z),n(z,y)) = Az’ .3z,y.(z' = n(z,y)) A R(z).

Let g be a user specified property, and § denote the complement of g. Then
the preimage of g(xz), ie the set of states that can reach a state violating the
property g in one step, can be computed as follows:

Pre(g,n) = Az.37',y.(z' = n(z,y)) A g(z').

8.1 Approximation by Projections

Let w = (wy,...,wp) be a collection of not necessarily disjoint subsets of .
(Each subset will be referred to as a block). We define the operator o;(R)
which projects a predicate R(z) onto the variables in w;. Let z consist of all
of the Boolean variables in z that are not in w;. We can define a; as

a;(R(z,w;)) = Aw;.32.R(z, wy).

Clearly the set of Boolean vectors satisfying R is a subset of those satisfying
a;(R). This can be written using logical implication as R — «;(R). The
projection operator o projects a predicate R(z) onto the various w;’s, and its
associated concretization operator 7 conjoins the collection of projections.

a(R(z)) = (u(R), ..., (R)).
")/(Rl, .o ,R,p) = [‘\le.

Lemma 3.1 For every predicate R(z) and collection of subsets (wy,...,wp)
of z, R = v(a(R)).

The proof for this lemma is simple since R — «;(R) for all j. Thus projecting a
predicate R onto a collection of subsets, and then concretizing the projections
by < results in an overapprozimation.

It is interesting to note that the pair of functions (a,7) form a Galois
connection [7] between the partially ordered set describing the concrete space
([z — B], <) and the poset describing the abstract space (P([w; — B]) X ...x
P(jwp, — B]),C) where P(S) denotes the power set of S, and the ordering
relation for the abstract space is defined as (Ry,...,R,) T (Si,...,Sp) iff
Viell...o| R; C S..
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Let R = (Ry,...,Rp) and S = (Sy,...,S,) be two tuples of equal size. We
define the meet (M) and join (L)) operator between R and S as follows:

(Ry,...,Rp) M (S1,...,Sp)=(R1AS1,...,Ry A Sp)

(Ry, .., Bp) U (S,.. ., Sp) =(R1V S1,..., BV Sp)
Given the ordering relation (C) in the abstract domain, it is easy to verify that
the join operator returns the least upper bound, and meet returns the greatest
lower bound of the two elements R and S in the abstract domain. Further
v(R) U(S) € v(R US), which makes the join operator an approximation of
set union. (However, the meet operator is an exact set intersection operator,
since v(R) N v(S) = v(RM S)).

The operator a allows us to represent a big BDD with support in z by

a tuple of potentially smaller BDDs with limited support, at the cost of loss
of accuracy. 7 can potentially result in a bigger BDD with bigger support,
hence we would like to avoid computing y(Ry, ..., R,) explicitly. Let Imgp
(the subscript ap denotes “approximate”) return the projected version of the
image of an implicit conjunction of BDDs, and let Pre,, return the projected
version of the preimage of an implicit conjunction of BDDs.

Imgp(R,n) =a(Im(y(R),n(z,y)))
Preqp(R,n) =a(Pre(y(R),n(z,y)))
Using I'm,p, we can compute an overapproximation, FwdReachqp(go), of
the reachable states for a machine M. Analogously using Pre,,, we can com-

pute an overapproximation, BackReache,(g), of the set of states in M that
can reach the set of states g as follows:

FwdReachqp(g0) = Up R.(a(g) L Im,,(R, n))

BackReachap(g) = lp R.(a(g) U Preq,(R,n))
where Ifp is a least fixed point iteration [3] which starts with R = (0,...,0),
and on each iteration joins the current approximate set with the approximate
successor set. Finally after reaching convergence, it returns a tuple R to
FwdReachgp(qo) or BackReach,,(g) as the case may be. The approximate set
of states that can be reached is the implicit conjunction y(FwdReachqy(qo))-
The approximate set of states that can reach g is is the mplicit conjunction
v(BackReachq, (7))

Using Lemma 1 and monotonicity of Im and Pre functions, it can be

shown that the derived functions I'm,, and Pre,, have the property

Im(R(z),n) € Im(y(a(R(2))), n) S Y(Imap(a(R(z)), n))
Pre(R(z),n) C Pre(y(a(R(x))),n) S v(Preqp(a(R(z)),n))
The proof that FwdReach,, (and BackReach,,) are overapproximations (su-

persets) follows trivially. These operators give us exact results in the special
case when there is just one subset, w; = z, in the collection w.

4 Overlapping Projections

Our scheme for choosing the collection of subsets is presently manual. Of
course, it would be desirable to automate, fully or partially, the choice of
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subsets and we are working on developing good heuristics to do so. Our
present heuristic [10] tries to put interacting finite state machines (FSMs)
together in one subset. Often a master FSM communicates with a number
of other slave FSMs. This is captured by having blocks, where the master
is paired with each of its slaves in different blocks. Occasionally two rather
big state machines have a small interface, which can be captured by adding
bits through which the two machines communicate to the subsets having the
corresponding FSMs.

4.1 Computing Img, by Multiple Constrain

The key step in our approximate forward propagation is computing Imgp.
Ime(R,n) = (S,...,5) = o(Im(y(R), n(z,y)))

We would like to be able to compute the S;’s separately, without comput-
ing Im(y(R),n). Clearly S; can only depend on the next state functions
of the variables appearing in the j® block, w; in w. Let «;(n) be the
subset of predicates determining the next state for the bits in w;. Clearly,
$; = Im(7(R), 5(n)).

To avoid unnecessary BDD blowup, we want to avoid the explicit conjunc-
tion y(R). S; can be computed, by forming the next state relation for block
w; and using early quantification [3]. However this did not work when we
tried it on our larger examples. Instead Coudert and Madre [6] have shown
how to compute the image of a Boolean function vector, using the generalized
cofactor (also called constrain) operator ({). (f | g)(z) has the same value as
f(z) when g(z) holds, and usually results in a smaller BDD than f.

Coudert and Madre [6] show that Im(y(R), ;(n)) = Im(1, oj(n) | 7v(R)).
To avoid computing the large BDD for y(R), it is tempting to compute a;(n)
Ry | Ry... | R,. This works [15] well if the supports of R;’s are disjoint.
However since we have overlapping subsets, the naive method is incorrect [10].

Instead, for overlapping projections, we use the method of multiple con-
strain [10]. Let (21, ..., 2p) be dummy state bits with corresponding next state
functions (Ry,..., Rp). The multiple constrain method relies on the following
key observation

Im(Y(Ry, ..., Rp), aj(n)) = Im(L, [aj(n), Ry, ..., Bpl) L 21 b 22 L 2

We can optimize on the usual recursive co-domain partitioning algorithm [6],
by avoiding computing the parts of the range that will be discarded. The al-
gorithm I'm,,. described below implements the required function Im,,. (A
more detailed treatment is given in [10]).

function Imgy.((Ri,...,Rp), (n1,-..,nm))
Vé[ng, ..., m, Ry, ..., Ry
for j=p down to 1 by 1 do
vV v }v[m+j]
endfor
return Im(1, {v[1],...,v[m]})
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5 Using Auxiliary Variables to refine Im,, and Pre,,

The previous schemes can be further improved upon by augmenting the set
of state variables with some auziliary state variables. An auxiliary variable
is an internal state component that is added to the implementation with-
out affecting the externally visible behavior. The idea of augmenting a legal
implementation with some extra state components in a way that places no
constraints on the behavior of the implementation is not entirely new. Abadi
and Lamport [1] introduced a special class of auxiliary variables, history and
prophecy variables, to broaden the applicability of refinement mapping tech-
niques. We use auxiliary state variables [12] to broaden applicability of ap-
proximate reachability techniques.

5.1 Converting Internal Wires to Auziliary State Variable

We look for important internal conditions in the combinational logic and con-
vert them to auxiliary variables. An auxiliary variable is useful because it
captures important properties of many state variables into a single new state
bit. This can be added to the other subsets to capture correlation between
many state variables, even as the number of variables in different subsets is
small.

We make use of auxiliary variables by converting them to state variables.
To assign a next state function to an auxiliary variable, we get the fanin cone
for the internal wire it corresponds to. (A fanin cone of a wire is obtained by
topologically moving back from the wire and grabbing all the logic that feeds to
it until we hit a flop boundary or an input boundary). Let f(z) be the Boolean
function for cone of logic feeding into a wire, called foo. Recall that n is the
next state functions for the usual state variables z. The next state function
for auxiliary state variable foo is obtained by substituting the corresponding
next state function from n for each state variable in the support of f(z). This
has the effect of retiming the internal wire foo. (The initial condition for
auxiliary state variable foo is set by the image computation Im(qo, f)). This
construction is possible for only those internal wires whose fanin cones involve
just state variables and no inputs.

This limitation can be circumvented by including the inputs as part of the
state (as in a Kripke structure). We never used this for any of our results
here, but the Mealy machine M = (z,y, go, nn), can be transformed to M’ =
(', qh,n'), where 2’ = Uy and ¢} = go. The 3’ component is a set with a
primed version for each variable in y. The next state function for the = state
variables remains the same, but for the y variables, it is the corresponding
input variable from 3’. Assuming totally unconstrained input environment,
M and M’ allow the same externally visible behaviors. However M’ allows us
more flexibility in choosing auxiliary state variables.

Our scheme for choosing which internal abstractions to convert to auxiliary
state variables is presently manual, and relies on being able to inspect the RTL
source. We believe it helps to look at the RTL source, because designers often
create internal abstractions themselves, while coding up their design using a
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hardware description language (such as Verilog). Hence we can take leverage
off this high level information directly by inspecting the RTL description. We
presently look for internal wires in the RTL description that have many state
variables in their fanin support. More details on our heuristic can be obtained
from [12].

6 Refinement

An overapproximation of the states that lie on a path from the initial state go
to a state not satisfying a user-specified property g is computed by repeated
forward and backwards passes, until the approximation no longer improves.

function BackAndForth (g)
Re + (0,...,0)
Ry (1,...,1)
while (R¢ # Ryp) do

Re « Ifp R.(a(g) U (Imgp(R,n) MRy))

if (v(R¢) — g) return “no errors”

Ry, « Ufp R.(a(g) U (Preg(R,n)NRy))

if (y(Rp) Ago =0) return “no errors”
endwhile
return R
The tests y(R¢) — g and v(Rp) A g0 = 0 can be performed without com-
puting the explicit conjunctions of the BDDs in R and Ry by computing
images, using the method of multiple constrain [10]. y(Rf) — ¢ holds iff
Im(y(R),g) = {1}, and (v(R) A qo) = 0 iff Im(y(R),q) = {0}. If BackAnd-
Forth is unable to prove the desired property g, it is often possible to run it
again with larger blocks of variables in w.

6.1 Counterezamples

If BackAndForth reports a possible error, it is useful to check whether there
is an actual error by generating an example path from go to a state that
does not satisfy g. This both confirms the existence of an error and provides
debugging information to the user. In exact reachability analysis, if an error
state is reachable from an initial state, it is straightforward to construct a
specific path from the initial state to an error. But in approximate analysis,
such a path may not exist. More subtly, the algorithm may have found a real
error via a non-existent path. A simple search method was implemented for
counterexample generation which worked well on examples.

Starting from the error states, the algorithm computes approximate preim-
ages and stores the preimages obtained at the various iterations of the fixpoint
algorithm in a stack. Let Ty,77,..., T, (where T}, intersects with the error
states) be the final contents of the stack, and let T; be the first level at which
the approximate preimage intersects with the initial state go. Choose a single
state, sy from the intersection gy A7; and compute an exact image of so. If the
image of s intersects with 7., choose a single state s; from the intersection
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and continue moving forward. It is also possible that the image of some state
s; in layer T; may lie entirely in T; and not intersect with T}, at all (implying
Tj+1 is approximately reachable from s; but not exactly reachable from s;),
in which case, randomly choose another state s;y; from the image of s; and
continue trying to move to the next layer in the stack. If the algorithm spends
more than 10 steps at the same layer, it aborts and reports that it could not
find a counterexample.

This simple algorithm has worked well on proving local safety properties
over the individual submodules of FLASH I/O, but often fails when we.prove
global safety properties over the complete design. We are currently working
on improving this and looking for ways to improve the approximations when
the counterexample generation gets stuck.

7 Experiments

The experimental implementation of the method was in LISP, calling David
Long’s BDD package (implemented in C) via the foreign function interface.
The method was evaluated on a collection of control circuits from the MAGIC
chip, a custom node controller in the Stanford FLASH multiprocessor [13].
For comparison with earlier work, we also present our results when applied to
the ISCAS89 benchmark suite.

Approzimate Forward Reachability: In the case of 13207 circuit from the
ISCAS-89 benchmark suite, earlier approximate schemes based on disjoint
partitions [5] resulted in a superset with a satisfying fraction of 3.42e-106,
whereas our scheme with overlapping projections resulted in a tighter superset
with a satisfying fraction of 1.13e-115, which represents an improvement by
3.3e+08. Similarly in case of s38584, results with overlapping projections
were better by a factor of 8.8e+15. A more detailed listing of the results
we obtained on the other circuits from the ISCAS89 suite and the results on
the FLASH I/O modules is given in [10]. Further on adding auxiliary state
variables the results obtained by overlapping projections over the usual state
variables alone, was further improved by at least an order of magnitude. More
details on the results obtained with auxiliary state variables are in [12].

Approzimate Forward and Backward Reachability: We applied our approxi-
mate forward and backward routines to prove some designer provided invariant
properties on various submodules in FLASH I/O. Out of 20 properties, the
approximation scheme was able to prove 13 of them, and present counterex-
amples for the remaining 7. (More details on the results with the modules in
FLASH I/O can be obtained from [11]).

Proving global properties on a big design: We have also applied our al-
gorithm to prove some more global properties over FLASH I/0. Using the
lossless cone-of-influence reduction, we are able to reduce the original design
(nearly 2400 state variables) to the order of 200 state variables. By doing ap-
proximate reachability over these 200 variables using overlapping projections,
we have been able to prove 3 global invariants and disprove 2 others with a
valid counterexample. However there is still more to be done before designs
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of this size can be directly handled by our model checker.
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